EPBC Review – media release

Nuclear status quo in federal environmental law review

Mineral Policy Institute and Friends of the Earth Australia

Media Release ‒ 20 July 2020

National and state environment groups have given a cautious welcome to the continuation of long-standing protections against nuclear risks in the current statutory review of the Environmental Protection Biodiversity Conservation Act – Australia’s federal environmental laws. The interim report released today has stated that the Commonwealth should maintain the capacity to intervene in uranium mining and made no recommendation to change existing prohibitions on nuclear activities, including domestic nuclear power.

Civil society groups made a joint submission to the EPBC review calling for the retention of the long standing ban on nuclear power and continuing federal oversight of uranium mining. The EPBC review committee’s interim report has flagged an intention to continue both protections despite lobbying from the Mineral Council of Australia to weaken these.

However, environment groups are concerned about a possible weakening of uranium mining regulations flagged in the interim report. Associate Professor Gavin Mudd, Chair of the Mineral Policy Institute, said: “The interim report proposes the further devolution of uranium mining regulation to states and territories, coupled to the establishment of ‘National Environmental Standards’. An obvious risk is that the standards will be weak, enforcement will be deficient as is already the case, and devolution will weaken the already inadequate oversight of uranium mining.”

“Uranium mining is different to other types of mining. Australia’s uranium mining sector has been dominated by license breaches, accidents, spills and a persistent failure to rehabilitate as promised. The last thing we need is a weakening of regulations and oversight. Apart from SA and NT every state and territory have a ban or prohibition on uranium mining. It is unsafe and unpopular and needs greater scrutiny, not less,” Assoc. Prof. Mudd said.

The Review’s interim report makes no recommendation to repeal the long-standing prohibition on domestic nuclear power. “Nuclear power is expensive, dangerous and unpopular,” said Dr Jim Green, national nuclear campaigner with Friends of the Earth Australia. “The prohibition in the EPBC Act reflects this. Nuclear is thirsty, produces high level nuclear waste for which there are no safe storage options and produces materials that can be diverted into nuclear weapons. It is a profound security and safety risk. And nuclear power is absurdly expensive.”

“Recent comments from the current Environment Minister and Opposition Leader show a clear bipartisan rejection of nuclear power. There is broad opposition among civil society as shown through a joint statement by over 60 organisations representing millions of Australians. Given the lack of social license for nuclear power in Australia we welcome the continuation of this prudent prohibition,” Dr Green said.

Following the Australian uranium-fuelled Fukushima nuclear disaster the UN Secretary General called for all uranium producing countries to conduct a cost-benefit analysis of the industry. Groups have called on the Morrison government to now hold an independent review of the uranium sector.

NSW Deputy Premier John Barilaro’s nuclear falsehoods

Correcting the nuclear falsehoods of NSW Deputy Premier and Nationals leader John Barilaro. Mr. Barilaro has been repeatedly provided with factual information so there is no excuse for his ignorance.

March 2020

Contact: Jim Green, FoE Australia national nuclear campaigner, jim.green@foe.org.au

Mr. Barilaro: Nuclear power is “probably the cheapest cost to the average Australian household”.

Facts:

* Nationals Senator Matt Canavan acknowledges that nuclear power is “very expensive”.

* Industry insiders and lobbyists freely acknowledge that nuclear power is suffering from an economic crisis that could prove to be terminal.

* Nuclear power is in decline worldwide and a growing number of countries are phasing out nuclear power including Germany, Switzerland, Spain, Belgium, Taiwan and South Korea.

* Laws banning nuclear power have saved Australia from the huge costs associated with failed and failing reactor projects in Europe and North America, such as the twin-reactor project in South Carolina that was abandoned in 2017 after the expenditure of at least A$13.4 billion, bankrupting Westinghouse. That expensive fiasco could so easily have been replicated in NSW if not for the prudent legal ban.

* There are many other examples of shocking nuclear costs and cost overruns, including:

‒ The cost of the two reactors under construction in the US state of Georgia has doubled and now stands at A$20.4‒22.6 billion per reactor.

‒ The cost of the only reactor under construction in France has nearly quadrupled and now stands at A$20.0 billion. It is 10 years behind schedule.

‒ The cost of the only reactor under construction in Finland has nearly quadrupled and now stands at A$17.7 billion. It is 10 years behind schedule.

‒ The cost of the four reactors under construction in the United Arab Emirates has increased from A$7.5 billion per reactor to A$10‒12 billion per reactor.

‒ The cost of the only two reactors under construction in the UK has increased to A$25.9 billion per reactor. A decade ago, the estimated cost was just A$4 billion. The UK National Audit Office estimates that taxpayer subsidies for the project will amount to A$58 billion.

Mr. Barilaro: “As I write this piece, a further 50 nuclear reactors are being built globally (450 reactors currently operate in 31 counties) including in Finland, France, the UK, China and Canada.”

Facts:

* The number of power reactors under construction has fallen steadily from 68 in 2013 to 49 as of Feb. 2020.

* As noted above, reactors under construction in Finland, France and the UK have been subject to catastrophic cost overruns.

* There has only been one reactor construction start in China in the past three years. The number of reactors under construction in China has fallen from 20 in 2017 to 10 now. Renewables generate twice as much electricity in China as nuclear power.

* No reactors are being built in Canada.

Mr. Barilaro on small modular reactors (SMRs): “Given their size and efficiency, their waste is minimal (new advancements in technology continues to address the waste issue)”.

Facts:

* SMRs would produce more nuclear waste per unit of energy produced compared to large reactors.

* A 2016 European Commission document states: “Due to the loss of economies of scale, the decommissioning and waste management unit costs of SMR will probably be higher than those of a large reactor (some analyses state that between two and three times higher).”

* Mr. Barilaro’s “new advancements” (‘Generation IV’ concepts) have failed spectacularly and have clearly worsened nuclear waste management problems (see p.42-43 of our joint submission to the NSW inquiry).

Mr. Barilaro: “The compact nature of SMRs means they need close to only 5 per cent of the nuclear fuel required for large conventional reactors.”

Fact: As the South Australian Nuclear Fuel Cycle Royal Commission report noted: “SMRs have lower thermal efficiency than large reactors, which generally translates to higher fuel consumption and spent fuel volumes over the life of a reactor.”

Mr. Barilaro: SMRs are “becoming very affordable”.

Facts:

* Every independent economic assessment finds that electricity from SMRs will be more expensive than that from large reactors.

* SMRs will inevitably suffer from diseconomies of scale: a 250 MW SMR will generate 25% as much power as a 1,000 MW reactor  but it will require more than 25% of the material inputs and staffing, and a number of other costs including waste management and decommissioning will be proportionally higher.

* A December 2019 report by CSIRO and the Australian Energy Market Operator concluded that wind and solar power, including two to six hours of storage, is two to three times cheaper than power from small reactors per unit of energy produced. Nuclear lobbyists dispute the construction costs that underpin this estimate but, in fact, they are a neat fit with real-world construction costs (as opposed to self-serving industry speculation). Indeed the CSIRO/AEMO estimate is lower than the average cost of small-reactor projects in China, Russia and Argentina.

* SMRs in China, Russia and Argentina are, respectively, 2, 4 and 23 times over-budget. None could be described as “very affordable”.

Mr. Barilaro: SMRs “are now on the horizon”.

Facts:

* A handful of SMRs are under construction (half of them to power fossil fuel mining operations in the Arctic, the South China Sea and elsewhere).

* Private sector investment has been pitiful and the main game is to find governments reckless enough to bet billions of taxpayer dollars on high-risk projects. SMRs under construction are all being built by government agencies.

* The prevailing scepticism is evident in a 2017 Lloyd’s Register report based on the insights of almost 600 professionals and experts from utilities, distributors, operators and equipment manufacturers. They predict that SMRs have a “low likelihood of eventual take-up, and will have a minimal impact when they do arrive”.

* Likewise, a 2014 report produced by Nuclear Energy Insider, drawing on interviews with more than 50 “leading specialists and decision makers”, noted a “pervasive sense of pessimism” regarding SMRs.

Mr. Barilaro: SMRs are “not as water hungry as traditional nuclear power plants, because they use air or sand to cool the core.”

Facts:

* SMRs will likely use as much water per unit of energy produced compared to large reactors ‒ possibly more due to lower thermal efficiencies. Nuclear power, large or small, is incredibly thirsty: a typical large reactor consumes 35‒65 million litres of water per day. Gas cooling creates its own set of problems and inefficiencies, leading to higher costs ‒ that is why a very large majority of reactors are water-cooled.

* Sand to cool a reactor core? Perhaps he means sodium ‒ which has caused a number of fires in fast neutron reactors. Sand has only been used as a desperate measure in the event of major accidents, e.g. Chernobyl.

Mr. Barilaro: “We want to see investment in renewables but we know it’s not giving us the baseload.”

Fact: Some renewables provide baseload (e.g. hydro, bioenergy, geothermal) and intermittent renewables coupled to storage are effectively baseload. (Our supplementary submission to the NSW inquiry lists relevant literature.)

Mr. Barilaro: Nuclear power has “zero emissions”

Fact: The claim is false.

Mr. Barilaro: “The vast majority of us are not aware of the technological changes the industry has gone through for the past 45 years.”

* The ‘advanced’ nuclear power sector is dystopian because of its contribution to carbon emissions, troublesome nuclear waste legacies, and weapons proliferation.

* The ‘advanced’ nuclear power sector isn’t advancing. Many ‘advanced’ reactor projects are promoted ‒ there are lists of them, even lists of lists ‒ but meaningful funding, from governments and industry alike, is lacking.

Mr. Barilaro: “Last year, I attended and spoke at a global seminar in the US on the next generation of nuclear energy systems”.

Facts:

* Not everything said at nuclear industry conferences turns out to be true!

* Westinghouse said in 2006 that it could build an AP1000 reactor for as little as A$2 billion but the actual cost of AP1000 reactors under construction in the US state of Georgia is 10 times higher.

* EDF said it could build an EPR reactor in the UK for A$4 billion but the cost of the two EPR reactors now under construction in the UK is A$25.9 billion per reactor, a more than six-fold increase.

Mr. Barilaro: “While Australia’s future energy issues continue to go round in circles, the world is moving forward.”

Facts:

* Nuclear power is in decline worldwide and continues its downhill slide from its historic peak of 17.6% of global electricity generation in 1996 to 10.1% now.

* Renewable electricity generation has doubled over the past decade and now accounts for over 26% of global electricity generation.

Mr. Barilaro: SMRs “can be buried to withstand almost any physical or natural disaster.”

Facts:

* SMRs will be subject to the same risks as large reactors.

* Burying reactors below-grade would add a new set of problems as identified by the US Nuclear Regulatory Commission:

“Potential fire and explosion hazards: below-grade facilities present unique challenges, such as smoke/fire behavior; life safety; design and operation of the HVAC [heating, ventilating, and air conditioning] system and removal of waste water.

“Potential flooding hazards: below-grade reactors and subsystems raise concerns with regard to hurricane storm surges, tsunami run-up and water infiltration into structures.

“Limited access for conducting inspections of pressure vessels and components that are crucial for containing radiation, such as welds, steam generators, bolted connections and valves.”

Mr. Barilaro: “Rolls-Royce is currently leading a consortium to build SMRs and install them in former nuclear sites in the United Kingdom. The company plans to build between 10 and 15 of these stations by 2029.”

Facts:

* Rolls-Royce sharply reduced its small-reactor investment to “a handful of salaries” in 2018 and is threatening to abandon its R&D altogether unless the British government agrees to an outrageous set of demands and subsidies.

* There are disturbing connections between small reactor projects and nuclear weapons proliferation. Rolls-Royce provides one example: part of the company’s sales pitch to the British government includes the argument that a civil small-reactor industry in the UK “would relieve the Ministry of Defence of the burden of developing and retaining skills and capability” for its weapons program.

Mr. Barilaro: SMRs “can be mass-produced in an off-site factory, shipped to locations, and then assembled.”

Fact: No SMRs are being produced in an off-site factory. No such factories are being built.

Mr. Barilaro: “If we can mine uranium, we can embrace nuclear as tomorrow’s solution to deal with the climate change crisis of today.”

Facts:

* Uranium’s contribution to Australia’s economy is negligible (0.2% of export revenue, 0.01% of employment).

* NSW has no economic uranium deposits as the NSW Parliamentary inquiry acknowledged.

* A 2018 analysis by Australian economist Prof. John Quiggin concludes that it would be “virtually impossible” to get a nuclear power reactor operating in Australia before 2040. More years would elapse before nuclear power has generated as much as energy as was expended in the construction of the reactor. Thus it would be a quarter-century or more before nuclear power could even begin to reduce greenhouse emissions in Australia (and then only assuming that nuclear power displaced fossil fuels).

Mr. Barilaro: “This is going to test those who claim to be focusing and worried about the climate change emergency. If it is an emergency we need urgent and immediate actions. … Small modular reactors will provide exactly that.”

Facts:

* SMRs are at an early developmental stage. They are not a short-term proposition.

* In 2019, the Climate Council ‒ comprising Australia’s leading climate scientists ‒ issued a policy statement concluding that nuclear power plants “are not appropriate for Australia – and probably never will be”. The statement continued: “Nuclear power stations are highly controversial, can’t be built under existing law in any Australian state or territory, are a more expensive source of power than renewable energy, and present significant challenges in terms of the storage and transport of nuclear waste, and use of water”.


Premier must stand up to Barilaro on nuclear power

Sydney Morning Herald editorial, 11 March 2020

Deputy Premier John Barilaro has issued another ultimatum to the NSW government, this time over his obsession with starting a nuclear industry, but it is high time Premier Gladys Berejiklian called his bluff. Mr Barilaro is demanding that cabinet endorse a report by an upper house parliamentary committee backed by One Nation which recommends lifting the ban on uranium mining and nuclear power generation that has been in place since 1986. If cabinet refuses, he is threatening that he and perhaps the whole National Party will go their own way and vote in favour of a bill to that effect. The Herald reported on Monday that some cabinet ministers who oppose nuclear power are threatening to respond by quitting if Ms Berejiklian caves in.

The question of whether NSW can or should develop a nuclear industry is complicated. In theory, mining uranium could earn money and nuclear power generation could help reduce emissions. In fact, both face huge practical problems.

Of course, the Northern Territory and South Australia already mine uranium. But there is little reason for NSW to follow them now because, quite apart from concerns over waste storage, safety and proliferation, the business case is very weak. As the upper house report says, the state does not have any proven commercial deposits of uranium and, since the Fukushima disaster in Japan, the global market for uranium has been depressed. The conservative government in Western Australia ended its ban on uranium mining in 2010 but no new mines have opened.

Similarly, the prospects are also poor for nuclear power generation here any time soon. Nuclear reactors are very expensive and would take decades to build. By most reckonings, they cannot compete on cost with renewables – backed up by battery storage – or pumped hydro. Private companies will not build them without subsidies from taxpayers.

Given those practical issues, it is hard to understand why Mr Barilaro has joined One Nation’s crusade for nuclear power. Cynics would argue that his main goal is shielding the coal industry by delaying other more immediate and practical forms of action to reduce carbon emissions. And for Mr Barilaro, it might be a political winner. He might steal One Nation’s thunder and win the support of older regional voters and radio shock jocks who have a vendetta against those they see as renewables-loving green hippies.

But Mr Barilaro’s nuclear adventure risks doing damage to the government including a repeat of what happened to the Howard government in 2007 when it campaigned on nuclear power. The ALP pointed out that because plants require enormous amounts of water, they would have to be located on the coast. That went down like a lead balloon with voters and that was before Fukushima.

With a two-seat majority, Ms Berejiklian is more than usually dependent on her Coalition partner. Over the past year, Mr Barilaro has been able to extract some questionable concessions from her on water policy and regional jobs in the energy sector.

But she must not allow policy on such an important issue to be driven by a minority of Nationals MPs and the whims of One Nation backbenchers. As Premier, it should be Ms Berejiklian who sets the priorities of the state’s energy policy.

This is a good chance for Ms Berejiklian to stamp her authority on the government. Mr Barilaro has backed down in the past. He knows how much he and his party need to be in government. His bark is often worse than his bite.

Letter to SA Liberal MPs 2020

Friends of the Earth letter to all SA Liberal MPs

18 February 2020

We are writing to recommend an urgent rethink of the SA Government’s positioning regarding the proposed National Radioactive Waste Management Facility (NRWMF) near Kimba, for the following reasons:

It is unconscionable for the SA Government to be supporting a facility that is unanimously opposed by the Barngarla Traditional Owners.

The federal government excluded Barngarla Traditional Owners from the ‘community ballot’ held last year and even went so far as to contest a court case initiated by Traditional Owners regarding their exclusion.

The Barngarla Determination Aboriginal Corporation initiated a separate, confidential postal ballot, conducted by Australian Election Company. This resulted in 100% of respondents voting ‘no’ to the proposed nuclear facility. Not one Barngarla Traditional Owner supported the nuclear facility.

The Barngarla Determination Aboriginal Corporation (BDAC) wrote to the Federal Government stating:

This unanimous “No” vote demonstrates that there is absolutely no support at all within the Barngarla community for the NRWMF. BDAC has requested that given the first people for the area unanimously have voted against the proposed facility that the Minister should immediately determine that there is not broad community support for the project. In light of this total rejection of the NRWMF by the Barngarla people, it is BDAC’s responsibility to continue to give voice to the profound concerns Barngarla traditional owners have regarding the NRWMF, and to take whatever steps are necessary to oppose the NRWMF being located on Barngarla Country.”

The SA Labor Party argues that traditional owners should have a right of veto over nuclear projects given the sad and sorry history of the nuclear industry in SA, stretching back to the British atomic bomb tests. Deputy Leader of the Opposition Susan Close says that SA Labor is “utterly opposed” to the “appalling” process which led to the recent announcement regarding the Kimba site. Compare that to the Federal Government, whose mind-set seems not to have advanced from the ‘Aboriginal natives shall not be counted’ clause in the Constitution Act 1900. As Barngarla Traditional Owner Jeanne Miller says, Aboriginal people with no voting power are put back 50 years, “again classed as flora and fauna.”

The SA Government should support Barngarla Traditional Owners in their current struggle.

To do otherwise would be unconscionable and would inevitably result in a strong, sustained negative reaction from South Australian citizens and voters for years to come.

To support the nuclear facility despite the unanimous opposition of Barngarla Traditional Owners would be to drag South Australia back into the 18th century.

Kimba is a community divided

Former federal resources minister Matt Canavan previously said in Parliament that 65% support would meet the Government’s requirement for ‘broad community support’. Ironically, he qualified that statement by noting that other factors would need to be taken into account including the views of traditional owners. In 2016, the Department’s Principal Advisor Bruce Wilson said the Minister would need “at least that [65%], if not more” before proceeding with a siting decision.

But only 54.8% of eligible voters supported the proposed nuclear facility in the Kimba ballot held last year, well short of the 65% benchmark. If the results of the Barngarla ballot are combined with the government-initiated ballot, the overall level of support falls to just 43.8% of eligible voters (452/824 for the Kimba ballot, and 0/209 for the Barngarla ballot).

Kimba and Eyre Peninsula residents opposed to the proposed nuclear facility are determined to keep fighting. Barngarla Traditional Owners are determined to keep fighting. Environmentalists, trade unions, medical and public health groups, church and faith groups, and many other South Australians are determined to keep fighting.

Only 4% of South Australia is arable land. It is of deep concern that a nuclear waste facility in the area could be allowed to jeopardise the agricultural industry. Indeed the proposal to site a nuclear waste repository and store in Kimba is a clear breach of the National Health and Medical Research Council’s Code of Practice for Near-Surface Disposal of Radioactive Waste in Australia, which states that “the site for the facility should be located in a region which has no known significant natural resources, including potentially valuable mineral deposits, and which has little or no potential for agriculture or outdoor recreational use”.

The Federal Government’s claim that 45 jobs will be created is a cruel hoax. It is wildly inconsistent with comparable facilities overseas.[1] It assumes that Australian workers are at least 10 times less productive than workers at comparable facilities overseas.[2] Successive Federal Governments have claimed there would be zero, six or 15 jobs. Then the number magically tripled last year to 45 jobs ‒ just as the $10 million bribe was tripled to $30 million.

This is a statewide issue that will not go away

South Australians have greater ambitions for our state than to be someone else’s nuclear waste dump. This has been proven time and time again:

  • In 2004, after a six-year battle, the Howard government abandoned plans for a national nuclear waste dump near Woomera.
  • In 2016, the plan to import intermediate- and high-level nuclear waste from around the world was abandoned in the face of public and political opposition.
  • Last year, the Federal Government abandoned plans for a national nuclear waste facility near Hawker in the Flinders Ranges in the face of fierce opposition from the local community including Adnyamathanha Traditional Owners.

Each of those successful campaigns began from a standing start. Momentum was built and sustained until the proposal was abandoned. Momentum will continue to build until the Federal Government abandons its latest proposal to establish a national nuclear waste dump and store in SA. Surely it would be in the best interests, and is the responsibility of, the SA Liberal Government to support South Australians rather than falling in line behind the Federal Government.

A March 2015 survey commissioned by the Advertiser found just 15.7% support for a nuclear waste dump. A 2018 poll found just 35% support for a ‘national nuclear and radioactive waste dump in outback SA’ and 55% opposition. Those strongly opposed to a nuclear and radioactive waste dump in the 2018 poll outnumbered those strongly in support by a factor of three (41:14).

Long-lived intermediate level waste would be stored in SA ad infinitum

The Federal Government repeatedly refers to a facility for ‘low-level waste’. Yet the Government itself has acknowledged that, measured by volume, 30% of the waste is long-lived intermediate-level waste (LLILW). Measured by radioactivity ‒ a far more important criterion than volume ‒ well over 90% of the waste is LLILW.

This LLILW is destined for ‘interim’ above-ground storage at Kimba pending the establishment of a deep underground repository somewhere else. No site has been found for deep underground disposal of the LLILW. Indeed the Government has not even begun a site selection process, nor does it have any plans to initiate a site selection process. Overseas experience is not promising. Countless plans for deep underground nuclear waste repositories have been abandoned, sometimes after the expenditure of many millions or in some cases billions of dollars. The only operating deep underground disposal site in the world − the Waste Isolation Pilot Plant in New Mexico – was closed for three years after a chemical explosion in February 2014, with costs amounting to approx. A$3 billion.

The claim that LLILW would be removed from ‘interim’ storage at Kimba after around 30 years is implausible and deceitful. The federal regulator ARPANSA has repeatedly noted that the LLILW could be stored above-ground “for more than a century”[3] ‒ but no such acknowledgement has ever been made by the Federal Government.

LLILW would remain stored above ground in SA ad infinitum ‒ a clearly unacceptable situation.  An overwhelming majority of the LLILW is currently stored at the Lucas Heights site, 30 kms south of Sydney, operated by the Australian Nuclear Science and Technology Organisation (ANSTO). There is no reason to move LLILW from Lucas Heights for storage in SA. Australia’s nuclear expertise in concentrated at Lucas Heights ‒ not in Kimba. Security at ANSTO’s facility is vastly superior than would apply at a store in Kimba. According to Matt Canavan, 93% of the (low-and intermediate-level) waste destined for a nuclear waste ‘facility’ is currently stored at Lucas Heights.

South Australia’s Nuclear Waste Facility (Prohibition) Act 2000 ‒ an initiative of the Olsen Liberal Government ‒ was legislated specifically to prevent the imposition of intermediate-level nuclear waste facilities. The Marshall Liberal Government should honour that legacy and use all available legal and political initiatives to put a stop to the absurd proposal to move LLILW from above-ground storage at Lucas Heights to above-ground storage at Kimba.

Conclusion

South Australians are greatly indebted to Steven Marshall, Rob Lucas and other Liberal Party members for your strong role in putting an end to the ill-considered scheme to turn SA into the world’s high-level nuclear waste dump. We are indebted to you for continuing the transition to a low-carbon, renewable energy-based energy sector in SA.

We would enthusiastically welcome a repositioning regarding Canberra’s latest plan to dump nuclear waste in SA.

The Federal Government may have the legal power to impose a nuclear waste facility, but history has repeatedly shown that a sustained, concerted campaign can and will succeed.

References:

[1] The Australia Institute, 2018, ‘Down in the dumps, Economics of a national radioactive waste management facility’, https://tinyurl.com/svvroej

[2] https://www.onlineopinion.com.au/view.asp?article=19959&page=0

[3] See section 4 in the submission posted at https://d3n8a8pro7vhmx.cloudfront.net/foe/pages/199/attachments/original/1497932543/FoE_ACF_CCSA_submission_Kimba_June_2017-final.pdf

Bird deaths at Olympic Dam

Evaporation ponds at BHP’s Olympic Dam mine are killing hundreds of birds

Hundreds of birds are dying each year after mistaking Olympic Dam’s evaporation ponds for wetlands. Environment campaigners want the miner to stop using them.

Clare Peddie, Science Reporter, The Advertiser

July 10, 2019

https://www.adelaidenow.com.au/news/south-australia/evaporation-ponds-at-bhps-olympic-dam-mine-are-killing-hundreds-of-birds/news-story/1b886e4946f87fb7a729e201282f5cfb

Conservationists want BHP to stop using evaporation ponds at Olympic Dam that kill hundreds of birds, including threatened species.

They want BHP to cancel plans for a new pond and phase out 146ha of existing ponds, which are used for the disposal of acidic waste water.

It’s the second time in a month that concerns raised by conservationists have threatened to block a major infrastructure project.

In June, Birdlife Australia said the planned electricity interconnector between SA and NSW would destroy remaining habitat for the critically endangered black-eared miner bird.

Scientist and environment campaigner David Noonan says it’s shocking that birds are drowned, choked or scalded by BHP’s highly acidic, toxic wastewater.

“They see this as a wetland in an arid region as they’re travelling through,” he said. “They’re typically poisoned by contact, they die on site or they’re poisoned and die later.”

BHP found 224 dead birds during weekly monitoring in the 2017-18 financial year and that included 39 banded stilts, a vulnerable species in SA.

The number of dead birds found annually has hardly changed since 2011-12, when the banded stilt, red-necked avocet, whiskered tern, grey teal, black swan, hoary-headed grebe, little pied cormorant and silver gull were affected.

A BHP spokesman said methods to deter them such as wiring, gas guns and flashing lights haven’t worked but the company continues to explore new deterrent options.

“Extensive monitoring of birdlife in the Roxby Downs region shows the vast majority of birds visiting the area go to water sources other than Olympic Dam’s tailings and evaporation facilities,” he said.

“Notably, the average number of birds observed at Olympic Dam has remained relatively low for the past several years, and short-term increases have been linked to environmental conditions such as heavy rainfall rather than …new facilities.”

Plans for a huge open cut mine that were shelved in 2012 would have required a phase-out of evaporation ponds, but BHP says that condition is no longer relevant or applicable to current growth and expansion of the underground mine.

BHP is preparing to make a submission to both state and federal governments for a sixth evaporation pond.

A separate submission on a the new tailings storage facility – about the size of the Adelaide CBD and ten storeys high – has already been made, triggering an Environment Protection and Biodiversity Conservation Act referral, as in the case of the endangered bird in the path of the interconnector.

Civil society statement opposing nuclear power in Australia

Civil Society Statement on Domestic Nuclear Power

Submission to the Standing Committee on Environment and Energy Inquiry into Nuclear Energy in Australia

September 2019

Our nation faces urgent energy challenges. Against a backdrop of increasing climate impacts and scientific evidence the need for a clean and renewable energy transition is clear and irrefutable. All levels of government need to actively facilitate and manage Australia’s accelerated transition from reliance on fossil fuels to low carbon electricity generation.

The transition to clean, safe, renewable energy should also re-power the national economy. The development and commercialisation of manufacturing, infrastructure and new energy thinking is already generating employment and opportunity. This should be grown to provide skilled and sustainable jobs and economic activity, particularly in regional Australia. 

There should be no debate about the need for this energy transition, or that it is already occurring. However, choices and decisions are needed to make sure that the transition best meets the interests of workers, affected communities and the broader Australian society.

Against this context the federal government has initiated an Inquiry into whether domestic nuclear power has a role in this necessary energy transition. 

Our organisations, representing a diverse cross section of the Australian community, strongly maintain that nuclear power has no role to play in Australia’s energy future.

Nuclear power is a dangerous distraction from real movement on the pressing energy decisions and climate actions we need. We maintain this for a range of factors, including:

  • Waste: Nuclear reactors produce long-lived radioactive wastes that pose a direct human and environmental threat for many thousands of years and impose a profound inter-generational burden. Radioactive waste management is costly, complex, contested and unresolved, globally and in the current Australian context. Nuclear power cannot be considered a clean source of energy given its intractable legacy of nuclear waste.
  • Water: Nuclear power is a thirsty industry that consumes large volumes of water, from uranium mining and processing through to reactor cooling. Australia is a dry nation where water is an important resource and supply is often uncertain.
  • Time: Nuclear power is a slow response to a pressing problem. Nuclear reactors are slow to build and license. Globally, reactors routinely take ten years or more to construct and time over-runs are common. Construction and commercialisation of nuclear reactors in Australia would be further delayed by the lack of nuclear engineers, a specialised workforce, and a licensing, regulatory and insurance framework.
  • Cost: Nuclear power is highly capital intensive and a very expensive way to produce electricity. The 2016 South Australian Nuclear Fuel Cycle Royal Commission concluded nuclear power was not economically viable. The controversial Hinkley reactors being constructed in the UK will cost more than $35 billion and lock in high cost power for consumers for decades. Cost estimates of other reactors under construction in Europe and the US range from $17 billion upwards and all are many billions of dollars over-budget and many years behind schedule. Renewable energy is simply the cheapest form of new generation electricity as the CSIRO and the Australian Energy Market Operator concluded in their December 2018 report.
  • Security: Nuclear power plants have been described as pre-deployed terrorist targets and pose a major security threat. This in turn would likely see an increase in policing and security operations and costs and a commensurate impact on civil liberties and public access to information. Other nations in our region may view Australian nuclear aspirations with suspicion and concern given that many aspects of the technology and knowledge base are the same as those required for nuclear weapons. On many levels nuclear is a power source that undermines confidence.
  • Inflexible or unproven: Existing nuclear reactors are highly centralised and inflexible generators of electricity. They lack capacity to respond to changes in demand and usage, are slow to deploy and not well suited to modern energy grids or markets. Small Modular Reactors (SMRs) are not in commercial production or use and remain unproven and uncertain. This is no basis for a national energy policy.
  • Safety: All human made systems fail. When nuclear power fails it does so on a massive scale. The human, environmental and economic costs of nuclear accidents like Chernobyl and Fukushima have been massive and continue. Decommissioning and cleaning up old reactors and nuclear sites, even in the absence of any accidents, is technically challenging and very costly.
  • Unlawful and unpopular: Nuclear power and nuclear reactors are prohibited under existing federal, state and territory laws. The nuclear sector is highly contested and does not enjoy broad political, stakeholder or community support. A 2015 IPSOS poll found that support among Australians for solar power (78‒87%) and wind power (72%) is far higher than support for coal (23%) and nuclear (26%).
  • Disproportionate impacts: The nuclear industry has a history of adverse impacts on Aboriginal communities, lands and waters. This began in the 1950s with British atomic testing and continues today with uranium mining and proposed nuclear waste dumps. These problems would be magnified if Australia ever advanced domestic nuclear power.
  • Better alternatives: If Australia’s energy future was solely a choice between coal and nuclear then a nuclear debate would be needed. But it is not. Our nation has extensive renewable energy options and resources and Australians have shown clear support for increased use of renewable and genuinely clean energy sources.

The path ahead:

Australia can do better than fuel higher carbon emissions and unnecessary radioactive risk.

We need to embrace the fastest growing global energy sector and become a driver of clean energy thinking and technology and a world leader in renewable energy technology.

We can grow the jobs of the future here today. This will provide a just transition for energy sector workers, their families and communities and the certainty to ensure vibrant regional economies and secure sustainable and skilled jobs into the future.

Renewable energy is affordable, low risk, clean and popular. Nuclear is simply not.

Our shared energy future is renewable, not radioactive.

———–

SIGNATORIES

Environment groups

Australian Conservation Foundation

Arid Lands Environment Centre

Conservation Council SA

Conservation Council WA

Environment Centre NT

Environment Victoria

Environs Kimberley

Friends of the Earth Australia

Gene Ethics Network

Greenpeace Australia Pacific

Mineral Policy Institute

National Toxics Network

Nature Conservation Council NSW

Queensland Conservation Council

Wilderness Society

Trade unions

Australian Council of Trade Unions

Tasmanian Unions

Unions ACT

Unions WA

Unions SA

Unions NT

United Voice

Victorian Trades Hall Council

Australian Education Union

Australian Manufacturing Workers Union

Australian Nursing and Midwifery Federation

Australian Services Union

Communication Workers Union

Electrical Trades Union

Independent Education Union (Vic – Tas)

Maritime Union of Australia

National Union of Workers

United Firefighters Union

Indigenous groups

Australian Nuclear Free Alliance

Gundjehmi Aboriginal Corporation

No Dump Alliance

Health groups

Doctors for Environment Australia

Medical Association for the Prevention of War

Public Health Association of Australia

Faith groups

Uniting Church of Australia (Vic – Tas)

Sisters of Mercy

Jesuit Social Services

Josephite (SA) Reconciliation Circle

Climate / renewable / anti-nuclear / peace groups

AidWatch

Australian Youth Climate Coalition

Beyond Nuclear Initiative

Beyond Zero Emissions

Climate Action Monaro

Climate Action Newcastle

Climate Change Balmain-Rozelle

Darebin Climate Action Now

Green Institute

Hornsby Shire Climate Action

Independent and Peaceful Australia Network

Lithgow Environment Group

Madden Sainsbury Foundation

Nuclear Free NSW

Parramatta Climate Action Network

Renew (Alternative Technology Association)

Ryde Gladesville Climate Change Action Group

Smart Energy Council

Sustainable Energy Now (WA)

Sutherland Shire Environment Centre

Women’s International League for Peace and Freedom

350.org

Film review: ‘The New Fire’ and the old Gen IV rhetoric

Jim Green, Nuclear Monitor #866, 24 Sept 2018, https://wiseinternational.org/nuclear-monitor/866/nuclear-monitor-866-24-september-2018

The New Fire is a pro-nuclear propaganda film directed and produced by musician and film-maker David Schumacher. It’s similar in some respects to the 2013 film Pandora’s Promise.1,2 The New Fire premiere was held in October 2017 and it can be streamed online from 18 October 2018.

Promotional material claims that the film lacked “a supportive grant” (and celebrity endorsements and the backing of a major NGO) but the end-credits list numerous financial contributors: Berk Foundation, Isdell Foundation, Steven & Michele Kirsch Foundation, Rachel Pritzker, Roland Pritzker, Ray Rothrock, and Eric Uhrhane.

The film includes interviews with around 30 people (an overwhelming majority of them male) interspersed with footage of interviewees walking into buildings, and interviewees smiling. The musical underlay is a tedious drone ‒ a disappointment given Schumacher’s musical background. A highlight is hearing Eric Meyer ‒ an opera singer turned pro-nuclear activist ‒ bursting into song at various locations around the COP21 climate conference in Paris in December 2015, while he and his colleagues handed out free copies of the pro-nuclear book Climate Gamble.

Interviewees are mostly aging but the film’s main message is that young entrepreneurs may save the planet and its inhabitants with their Generation IV reactor projects. The film’s website states: “David Schumacher’s film focuses on how the generation facing the most severe impact of climate change is fighting back with ingenuity and hope. The New Fire tells a provocative and startlingly positive story about a planet in crisis and the young heroes who are trying to save it.”3

Schumacher writes (in the press kit): “These brilliant young people – some of the most gifted engineers of their generation, who in all likelihood could have cashed in for a fortune by doing something else – believe deeply that nuclear power could play a key role in saving the planet. And they are acting on that conviction. They did the research. They raised the money. They used cutting edge computer technology to perfect their designs. They are the new face of nuclear power, and to me, the newest and most unlikely climate heroes.”

These climate heroes are contrasted with anti-nuclear environmentalists. One interviewee says that “people of our generation are the first ones that have the opportunity to look at nuclear power without all the emotional baggage that previous generations have felt.” Another argues that anti-nuclear environmentalists are “very good, decent, smart people” but the “organizational DNA … that they have inherited is strongly anti-nuclear.” Another argues that environmental organizations “have been using nuclear power as a whipping boy for decades to raise funds”. Another interviewee attributes opposition to nuclear power to an “irrational fear of the unknown” (which surely poses a problem for the exotic Generation IV concepts promoted in the film) and another says that “once people sort of understand what’s going on with nuclear, they are much more open to it”.

The film trots out the usual anti-renewables tropes and falsehoods: 100% renewables is “just a fantasy”, renewables can contribute up to 20% of power supply and the remainder must be baseload: fossil fuels or nuclear power.

In rural Senegal, solar power has brought many benefits but places like Senegalese capital Dakar, with a population of one million, need electricity whether the sun is shining or not. A Senegalese man interviewed in the film states: “Many places in Africa definitely need a low cost, reliable, carbon neutral power plant that provides electricity 24/7. Nuclear offers one of the best options we have to do that kind of baseload.” The film doesn’t explain how a 1,000 MW nuclear plant would fit into Senegal’s electricity grid, which has a total installed capacity of 633 MW.4 The ‘microreactors’ featured in The New Fire might help … if they existed.

Accidents such as those at Fukushima and Chernobyl get in the news because they are “so unusual” according to interviewee Ken Caldeira. And they get in the news, he might have added, because of the estimated death tolls (in the thousands for Fukushima5, ranging to tens of thousands for Chernobyl6), the costs (around US$700 billion for Chernobyl7, and US$192 billion (and counting) for Fukushima8), the evacuation of 160,000 people after the Fukushima disaster and the permanent relocation of over 350,000 people after the Chernobyl disaster.9

“Most people understand that it’s impossible for a nuclear power plant to literally explode in the sense of an atomic explosion”, an interviewee states. And most people understand that chemical and steam explosions at Chernobyl and Fukushima spread radionuclides over vast distances. The interviewee wants to change the name of nuclear power plants to avoid any conflation between nuclear power and weapons. Evidently he didn’t get the memo that the potential to use nuclear power plants (and related facilities) to produce weapons is fast becoming one of the industry’s key marketing points.

Conspicuously absent from the film’s list of interviewees is pro-nuclear lobbyist Michael Shellenberger. We’ve taken Shellenberger to task for his litany of falsehoods on nuclear and energy issues10 and his bizarre conversion into an advocate of worldwide nuclear weapons proliferation.11 But a recent article by Shellenberger on Generation IV nuclear technology is informative and insightful ‒ and directly at odds with the propaganda in The New Fire.1

So, let’s compare the Generation IV commentary in The New Fire with that in Shellenberger’s recent article.

Transatomic Power’s molten salt reactor concept

The film spends most of its time promoting Generation IV reactor projects including Transatomic Power’s molten salt reactor (MSR) concept. [Note: Transatomic abandoned its molten salt R&D shortly after this film review was written – and before the film was publicly launched!]

Scott Nolan from venture capital firm Founders Fund says that Transatomic satisfies his four concerns about nuclear power: safety, waste, cost, proliferation. And he’s right ‒ Transatomic’s MSRs are faultless on all four counts, because they don’t exist. It’s doubtful whether they would satisfy any of the four criteria if they did actually exist.

Shellenberger quotes Admiral Hyman Rickover, who played a leading role in the development of nuclear-powered and armed submarines and aircraft carriers in the US: “Any plant you haven’t built yet is always more efficient than the one you have built. This is obvious. They are all efficient when you haven’t done anything on them, in the talking stage. Then they are all efficient, they are all cheap. They are all easy to build, and none have any problems.”

Shellenberger goes on to say:12

“The radical innovation fantasy rests upon design essentialism and reactor reductionism. We conflate the 2-D design with a 3-D design which we conflate with actual building plans which we conflate with a test reactor which we conflate with a full-sized power plant.

“These unconscious conflations blind us to the many, inevitable, and sometimes catastrophic “unknowns” that only become apparent through the building and operating of a real world plant. They can be small, like the need for a midget welder, or massive, like the manufacturing failures of the AP1000.

“Some of the biggest unknowns have to do with radically altering the existing nuclear workforce, supply chain, and regulations. Such wholesale transformations of the actually existing nuclear industry are, literally and figuratively, outside the frame of alternative designs.

“Everyone has a plan until they get punched in the face,” a wise man once said. The debacles with the AP1000 and EPR are just the latest episodes of nuclear reactor designers getting punched in the face by reality.

Shellenberger comments on MSR technology:12

“New designs often solve one problem while creating new ones. For example, a test reactor at Oak Ridge National Laboratory used chemical salts with uranium fuel dissolved within, instead of water surrounding solid uranium fuel. “The distinctive advantage of such a reactor was that it avoided the expensive process of fabricating fuel elements, moderator, control rods, and other high-precision core components,” noted Hewlett and Holl.

“In the eyes of many nuclear scientists and engineers these advantages made the homogeneous reactor potentially the most promising of all types under study, but once again the experiment did not reveal how the tricky problems of handling a highly radioactive and corrosive fluid were to be resolved.”

In The New Fire, Mark Massie from Transatomic promotes a “simpler approach that gives you safety through physics, and there’s no way to break physics”. True, you can’t break physics, but highly radioactive and corrosive fluids in MSRs could break and rust pipes and other machinery.

Leslie Dewan from Transatomic trots out the silliest advantage attributed to MSRs: that they are meltdown-proof. Of course they are meltdown-proof ‒ and not just in the sense that they don’t exist. The fuel is liquid. You can’t melt liquids. MSR liquid fuel is susceptible to dispersion in the event of steam explosions or chemical explosions or fire, perhaps more so than solid fuels.

Michael Short from MIT says in the film that over the next 2‒3 years they should have preliminary answers as to whether the materials in Transatomic MSRs are going to survive the problems of corrosion and radiation resistance. In other words, they are working on the problems ‒ but there’s no guarantee of progress let alone success.

Dewan claims that Transatomic took an earlier MSR design from Oak Ridge and “we were able to make it 20 times as power dense, much more compact, orders of magnitude cheaper, and so we are commercializing our design for a new type of reactor that can consume existing stockpiles of nuclear waste.”

Likewise, Jessica Lovering from the Breakthrough Institute says: “Waste is a concern for a lot of people. For a lot of people it’s their first concern about nuclear power. But what’s really amazing about it is that most of what we call nuclear waste could actually be used again for fuel. And if you use it again for fuel, you don’t have to store it for tens of thousands of years. With these advanced reactors you can close the fuel cycle, you can start using up spent fuel, recycling it, turning it into new fuel over and over again.”

But in fact, prototype MSRs and fast neutron reactors produce troublesome waste streams (even more so than conventional light-water reactors) and they don’t obviate the need for deep geological repositories. A recent article in the Bulletin of the Atomic Scientists ‒ co-authored by a former chair of the US Nuclear Regulatory Commission ‒ states that “molten salt reactors and sodium-cooled fast reactors – due to the unusual chemical compositions of their fuels – will actually exacerbate spent fuel storage and disposal issues.”13 It also raises proliferation concerns about ‘integral fast reactor’ and MSR technology: “Pyroprocessing and fluoride volatility-reductive extraction systems optimized for spent fuel treatment can – through minor changes to the chemical conditions – also extract plutonium (or uranium 233 bred from thorium).”

Near the end of the film, it states: “Transatomic encountered challenges with its original design, and is now moving forward with an updated reactor that uses uranium fuel.” Transatomic’s claim that its ‘Waste-Annihilating Molten-Salt Reactor’ could “generate up to 75 times more electricity per ton of mined uranium than a light-water reactor” was severely downgraded to “more than twice” after calculation errors were discovered. And the company now says that a reactor based on the current design would not use waste as fuel and thus would “not reduce existing stockpiles of spent nuclear fuel”.14,15

So much for all the waste-to-fuel rhetoric scattered throughout The New Fire.

Michael Short from MIT claims MSRs will cost a “couple of billion dollars” and Dewan claims they will be “orders of magnitude cheaper” than the Oak Ridge experimental MSR. In their imaginations, perhaps. Shellenberger notes that “in the popular media and among policymakers, there has remained a widespread faith that what will make nuclear power cheaper is not greater experience but rather greater novelty. How else to explain the excitement for reactor designs invented by teenagers in their garages and famous software developers [Bill Gates / TerraPower] with zero experience whatsoever building or operating a nuclear plant?”12

Shellenberger continues:12

“Rather than address the public’s fears, nuclear industry leaders, scientists, and engineers have for decades repeatedly retreated to their comfort zone: reactor design innovation. Designers say the problem isn’t that innovation has been too radical, but that it hasn’t been radical enough. If only the coolant were different, the reactors smaller, and the building methods less conventional, they insist, nuclear plants would be easier and cheaper to build.

“Unfortunately, the historical record is clear: the more radical the design, the higher the cost. This is true not only with the dominant water-cooled designs but also with the more exotic designs ‒ and particularly sodium-cooled ones.”

Oklo’s sodium-cooled fast neutron microreactor

The New Fire promotes Oklo’s sodium-cooled fast neutron microreactor concept, and TerraPower’s sodium-cooled fast neutron ‘traveling wave’ reactor (TerraPower is also exploring a molten chloride fast reactor concept).

Oklo co-founder Jacob DeWitte says: “There’s this huge, awesome opportunity in off-grid markets, where they need power and they are relying on diesel generators … We were talking to some of these communities and we realized they use diesel because it’s the most energy dense fuel they know of. And I was like, man, nuclear power’s two million times as energy dense … And they were like, ‘Wait, are you serious, can you build a reactor that would be at that size?’ And I said, ‘Sure’.”

Which is all well and good apart from the claim that Oklo could build such a reactor: the company has a myriad of economic, technological and regulatory hurdles to overcome. The film claims that Oklo “has begun submission of its reactor’s license application to the [US] Nuclear Regulatory Commission” but according to the NRC, Oklo is a “pre-applicant” that has gone no further than to notify the NRC of its intention to “engage in regulatory interactions”.16

There’s lots of rhetoric in the film about small reactors that “you can role … off the assembly line like Boeings”, factory-fabricated reactors that “can look a lot like Ikea furniture”, economies of scale once there is a mass market for small reactors, and mass-produced reactors leading to “a big transition to clean energy globally”. But first you would need to invest billions to set up the infrastructure to mass produce reactors ‒ and no-one has any intention of making that investment. And there’s no mass market for small reactors ‒ there is scarcely any market at all.17

TerraPower

TerraPower is one step ahead of Transatomic and Oklo ‒ it has some serious funding. But it’s still a long way off ‒ Nick Touran from TerraPower says in the film that tests will “take years” and the company is investing in a project with “really long horizons … [it] may take a very long time”.

TerraPower’s sodium-cooled fast neutron reactor remains a paper reactor. Shellenberger writes:12

“In 2008, The New Yorker profiled Nathan Myhrvold, a former Microsoft executive, on his plans to re-invent nuclear power with Bill Gates. Nuclear scientist Edward “Teller had this idea way back when that you could make a very safe, passive nuclear reactor,” Myhrvold explained. “No moving parts. Proliferation-resistant. Dead simple.”

“Gates and Myhrvold started a company, Terrapower, that will break ground next year in China on a test reactor. “TerraPower’s engineers,” wrote a reporter recently, will “find out if their design really works.”

“And yet the history of nuclear power suggests we should have more modest expectations. While a nuclear reactor “experiment often produced valuable clues,” Hewlett and Holl wrote, “it almost never revealed a clear pathway to success.” …

“For example, in 1951, a reactor in Idaho used sodium rather than water to cool the uranium ‒ like Terrapower’s design proposes to do. “The facility verified scientific principles,” Hewlett and Holl noted, but “did not address the host of extraordinary difficult engineering problems.” …

“Why do so many entrepreneurs, journalists, and policy analysts get the basic economics of nuclear power so terribly wrong? In part, everybody’s confusing nuclear reactor designs with real world nuclear plants. Consider how frequently advocates of novel nuclear designs use the future or even present tense to describe qualities and behaviors of reactors when they should be using future conditional tense.

“Terrapower’s reactor, an IEEE Spectrum reporter noted “will be able to use depleted uranium … the heat will be absorbed by a looping stream of liquid sodium … Terrapower’s reactor stays cool”.

“Given that such “reactors” do not actually exist as real world machines, and only exist as computer-aided designs, it is misleading to claim that Terrapower’s reactor “will” be able to do anything. The appropriate verbs for that sentence are “might,” “may,” and “could.” …

“Myhrvold expressed great confidence that he had proven that Terrapower’s nuclear plant could run on nuclear waste at a low cost. How could he be so sure? He had modeled it. “Lowell and I had a month-long, no-holds-barred nuclear-physics battle. He didn’t believe waste would work. It turns out it does.” Myhrvold grinned. “He concedes it now.”

“Rickover was unsparing in his judgement of this kind of thinking. “I believe this confusion stems from a failure to distinguish between the academic and the practical,” he wrote. “The academic-reactor designer is a dilettante. He has not had to assume any real responsibility in connection with his projects. He is free to luxuriate in elegant ideas, the practical shortcomings of which can be relegated to the category of ‘mere technical details.'””

www.newfiremovie.com

www.facebook.com/NewFireMovie/

www.twitter.com/newfiremovie

www.vimeo.com/240644902

www.youtube.com/channel/UCda0hiEct_t1dNnoX5BNH2g

References:

  1. Nuclear Monitor #764, ‘Pandora’s Promise’ Propaganda, 28 June 2013, www.wiseinternational.org/nuclear-monitor/764/pandoras-promise-propaganda
  2. Nuclear Monitor #773, ‘Pandora’s Propaganda’, 21 Nov 2013, www.wiseinternational.org/nuclear-monitor/773/pandoras-propaganda
  3. https://newfiremovie.com/
  4. https://en.wikipedia.org/wiki/Energy_in_Senegal
  5. Ian Fairlie, 2 April 2014, ‘New UNSCEAR Report on Fukushima: Collective Doses’, www.ianfairlie.org/news/new-unscear-report-on-fukushima-collective-doses/
  6. 24 April 2014, ‘The Chernobyl Death Toll’, Nuclear Monitor #785, www.wiseinternational.org/nuclear-monitor/785/chernobyl-death-toll
  7. Jonathan Samet and Joann Seo, 2016, ‘The Financial Costs of the Chernobyl Nuclear Power Plant Disaster: A Review of the Literature’, www.greencross.ch/uploads/media/2016_chernobyl_costs_report.pdf
  8. Nuclear Monitor #836, 16 Dec 2016, ‘The economic impacts of the Fukushima disaster’, www.wiseinternational.org/nuclear-monitor/836/economic-impacts-fukushima-disaster
  9. World Health Organization, 13 April 2016, ‘World Health Organization report explains the health impacts of the world’s worst-ever civil nuclear accident’, www.who.int/mediacentre/news/releases/2006/pr20/en/
  10. Nuclear Monitor #853, 30 Oct 2017, ‘Exposing the misinformation of Michael Shellenberger and ‘Environmental Progress”, www.wiseinternational.org/nuclear-monitor/853/exposing-misinformation-michael-shellenberger-and-environmental-progress
  11. Nuclear Monitor #865, 6 Sept 2018, ‘Nuclear lobbyist Michael Shellenberger learns to love the bomb, goes down a rabbit hole’, www.wiseinternational.org/nuclear-monitor/865/nuclear-monitor-865-6-september-2018
  12. Michael Shellenberger, 18 July 2018, ‘If Radical Innovation Makes Nuclear Power Expensive, Why Do We Think It Will Make Nuclear Cheap?’, www.forbes.com/sites/michaelshellenberger/2018/07/18/if-radical-innovation-makes-nuclear-power-expensive-why-do-we-think-it-will-make-nuclear-cheap
  13. Lindsay Krall and Allison Macfarlane, 2018, ‘Burning waste or playing with fire? Waste management considerations for non-traditional reactors’, Bulletin of the Atomic Scientists, 74:5, pp.326-334, https://tandfonline.com/doi/10.1080/00963402.2018.1507791
  14. James Temple, 24 Feb 2017, ‘Nuclear Energy Startup Transatomic Backtracks on Key Promises’, www.technologyreview.com/s/603731/nuclear-energy-startup-transatomic-backtracks-on-key-promises/
  15. Nuclear Monitor #849, 25 Aug 2017, ‘James Hansen’s Generation IV nuclear fallacies and fantasies’, www.wiseinternational.org/nuclear-monitor/849/james-hansens-generation-iv-nuclear-fallacies-and-fantasies
  16. NRC, ‘Advanced Reactors (non-LWR designs)’, www.nrc.gov/reactors/new-reactors/advanced.html, accessed 16 Sept 2018
  17. Nuclear Monitor #800, 19 March 2015, ‘Small modular reactors: a chicken-and-egg situation’, www.wiseinternational.org/nuclear-monitor/800/small-modular-reactors-chicken-and-egg-situation

Australian Civil Society Letter re Domestic Nuclear Power

August 2019

Our nation faces urgent energy challenges. Against a backdrop of increasing climate impacts and scientific evidence the need to adopt clean energy is clear and irrefutable. Australia must transition from fossil fuels to low carbon electricity generation.

This transition to clean, safe, renewable energy can also re-power the national economy. The development and commercialisation of manufacturing and infrastructure and new energy thinking can provide skills and sustainable employment opportunities, particularly in regional Australia.

There should be no debate about the need for this energy transition, however choices and decisions are needed on how best to achieve it. The federal government has initiated an Inquiry into whether domestic nuclear power has a role in this energy transition.

Our organisations, which represent a diverse cross section of the Australian community, strongly maintain that nuclear power has no role in Australia’s energy future.

Nuclear power is a dangerous distraction from real movement on the pressing energy decisions and climate actions we need. We maintain this for a range of factors, including:

  • Waste: Nuclear reactors produce long-lived radioactive wastes that pose a direct human and environmental threat for many thousands of years and impose a profound inter-generational burden. Radioactive waste management is costly, complex, contested and unresolved, globally and in the current Australian context. Nuclear power cannot be considered a clean source of energy given its intractable legacy of nuclear waste.
  • Water: Nuclear power is a thirsty industry that consumes large volumes of water, from uranium mining and processing through to reactor cooling. Australia is a dry nation where water is an important resource and supply is often uncertain.
  • Time: Nuclear power is a slow response to a pressing problem. Nuclear reactors are slow to build and license. Globally, reactors routinely take ten years or more to construct and time over-runs are common. Construction and commercialisation of nuclear reactors in Australia would be further delayed by the lack of nuclear engineers, a specialised workforce, and a licensing, regulatory and insurance framework.
  • Cost: Nuclear power is highly capital intensive and a very expensive way to produce electricity. The 2016 South Australian Nuclear Fuel Cycle Royal Commission concluded nuclear power was not economically viable. The controversial Hinkley reactors being constructed in the UK will cost more than $35 billion and lock in high cost power for consumers for decades. Cost estimates of other reactors under construction in Europe and the US range from $17 billion upwards and all are many billions of dollars over-budget and many years behind schedule. Renewable energy is simply the cheapest form of new generation electricity as the CSIRO and the Australian Energy Market Operator concluded in their December 2018 report.
  • Security: Nuclear power plants have been described as pre-deployed terrorist targets and pose a major security threat. This in turn would likely see an increase in policing and security operations and costs and a commensurate impact on civil liberties and public access to information. Other nations in our region may view Australian nuclear aspirations with suspicion and concern given that many aspects of the technology and knowledge base are the same as those required for nuclear weapons. On many levels nuclear is a power source that undermines confidence.
  • Inflexible or unproven: Existing nuclear reactors are highly centralised and inflexible generators of electricity. They lack capacity to respond to changes in demand and usage, are slow to deploy and not well suited to modern energy grids or markets. Small Modular Reactors (SMRs) are not in commercial production or use and remain unproven and uncertain. This is no basis for a national energy policy.
  • Safety: All human made systems fail. When nuclear power fails it does so on a massive scale. The human, environmental and economic costs of nuclear accidents like Chernobyl and Fukushima have been massive and continue. Decommissioning and cleaning up old reactors and nuclear sites, even in the absence of any accidents, is technically challenging and very costly.
  • Unlawful and unpopular: Nuclear power and nuclear reactors are prohibited under existing federal, state and territory laws. The nuclear sector is highly contested and does not enjoy broad political, stakeholder or community support. A 2015 IPSOS poll found that support among Australians for solar power (78‒87%) and wind power (72%) is far higher than support for coal (23%) and nuclear (26%).
  • Disproportionate impacts: The nuclear industry has a history of adverse impacts on Aboriginal communities, lands and waters. This began in the 1950s with British atomic testing and continues today with uranium mining and proposed nuclear waste dumps. These problems would be magnified if Australia ever advanced domestic nuclear power.
  • Better alternatives: if Australia’s energy future was solely a choice between coal and nuclear then a nuclear debate would be needed. But it is not. Our nation has extensive renewable energy options and resources and Australians have shown clear support for increased use of renewable and genuinely clean energy sources.

The path ahead: Rather than fuel carbon emissions and radioactive risk through domestic coal power plants and the export of coal and uranium, Australia can and should do better. We need to embrace the fastest growing global energy sector and become a driver of clean energy thinking and technology. Renewable energy is affordable, low risk, clean, and popular. Nuclear is simply not. Our shared energy future is renewable, not radioactive.

Nuclear Power & Climate Change

Friends of the Earth Australia Statement

August 2019

www.nuclear.foe.org.au

To download this statement as a PDF please use this link.

  1. Introduction
  2.  Nuclear Power Would Inhibit the Development of More Effective Solutions
  3. The Nuclear Power Industry is in Crisis
  4. Small Modular Reactors
  5. Nuclear Weapons Proliferation and Nuclear Winter
  6. A Slow Response to an Urgent Problem
  7. Climate Change & Nuclear Hazards: ‘You need to solve global warming for nuclear plants to survive.’
  8. Nuclear Racism
  9. Nuclear Waste
  10. More Information

1. Introduction

Support for nuclear power in Australia has nothing to do with energy policy ‒ it is instead an aspect of the ‘culture wars‘ driven by conservative ideologues (examples include current and former politicians Clive Palmer, Tony Abbott, Cory Bernardi, Barnaby Joyce, Mark Latham, Jim Molan, Craig Kelly, Eric Abetz, and David Leyonhjelm; and media shock-jocks such as Alan Jones, Andrew Bolt and Peta Credlin). With few exceptions, those promoting nuclear power in Australia also support coal, they oppose renewables, they attack environmentalists, they deny climate change science, and they have little knowledge of energy issues and options. The Minerals Council of Australia ‒ which has close connections with the Coalition parties ‒ is another prominent supporter of both coal and nuclear power.

In January 2019, the Climate Council, comprising Australia’s leading climate scientists and other policy experts, issued a policy statement concluding that nuclear power plants “are not appropriate for Australia – and probably never will be”. The statement continued: “Nuclear power stations are highly controversial, can’t be built under existing law in any Australian state or territory, are a more expensive source of power than renewable energy, and present significant challenges in terms of the storage and transport of nuclear waste, and use of water”.

Friends of the Earth Australia agrees with the Climate Council. Proposals to introduce nuclear power to Australia are misguided and should be rejected for the reasons discussed below (and others not discussed here, including the risk of catastrophic accidents).

2. Nuclear Power Would Inhibit the Development of More Effective Solutions

Renewable power generation is far cheaper than nuclear power. Lazard’s November 2018 report on levelised costs of electricity found that wind power (US$29‒56 per megawatt-hour) and utility-scale solar (US$36‒46 / MWh) are approximately four times cheaper than nuclear power (US$112‒189 / MWh).

A December 2018 report by the CSIRO and the Australian Energy Market Operator concluded that “solar and wind generation technologies are currently the lowest-cost ways to generate electricity for Australia, compared to any other new-build technology.”

Thus the pursuit of nuclear power would inhibit the necessary rapid development of solutions that are cheaper, safer, more environmentally benign, and enjoy far greater public support. A 2015 IPSOS poll found that support among Australians for solar power (78‒87%) and wind power (72%) is far higher than support for coal (23%) and nuclear (26%).

Renewables and storage technology can provide a far greater contribution to power supply and to climate change abatement compared to an equivalent investment in nuclear power. Peter Farley, a fellow of the Australian Institution of Engineers, wrote in January 2019: “As for nuclear the 2,200 MW Plant Vogtle [in the US] is costing US$25 billion plus financing costs, insurance and long term waste storage. For the full cost of US$30 billion, we could build 7,000 MW of wind, 7,000 MW of tracking solar, 10,000 MW of rooftop solar, 5,000MW of pumped hydro and 5,000 MW of batteries. That is why nuclear is irrelevant in Australia.”

Dr. Ziggy Switkowski ‒ who led the Howard government’s review of nuclear power in 2006 ‒ noted in 2018 that “the window for gigawatt-scale nuclear has closed”, that nuclear power is no longer cheaper than renewables and that costs are continuing to shift in favour of renewables.

Globally, renewable electricity generation has doubled over the past decade and costs have declined sharply. Renewables account for 26.5% of global electricity generation. Conversely, nuclear costs have increased four-fold since 2006 and nuclear power’s share of global electricity generation has fallen from its 1996 peak of 17.6% to its current share of 10%.

As with renewables, energy efficiency and conservation measures are far cheaper and less problematic than nuclear power. A University of Cambridge study concluded that 73% of global energy use could be saved by energy efficiency and conservation measures. Yet Australia’s energy efficiency policies and performance are among the worst in the developed world.

3. The Nuclear Power Industry is in Crisis

The nuclear industry is in crisis with lobbyists repeatedly acknowledging nuclear power’s “rapidly accelerating crisis”, a “crisis that threatens the death of nuclear energy in the West” and “the crisis that the nuclear industry is presently facing in developed countries”, while noting that “the industry is on life support in the United States and other developed economies” and engaging each other in heated arguments about what if anything can be salvaged from the “ashes of today’s dying industry”.

It makes no sense for Australia to be introducing nuclear power at a time when the industry is in crisis and when a growing number of countries are phasing out nuclear power (including Germany, Switzerland, Spain, Belgium, Taiwan and South Korea).

The 2006 Switkowski report estimated the cost of electricity from new reactors at A$40–65 / MWh. Current estimates are four times greater at A$165‒278 / MWh. In 2009, Dr. Switkowski said that a 1,000 MW power reactor in Australia would cost A$4‒6 billion. Again, that is about one-quarter of all the real-world experience over the past decade in western Europe and north America, with cost estimates of reactors under construction ranging from A$17‒24 billion (while a reactor project in South Carolina was abandoned after the expenditure of at least A$13.3 billion).

Thanks to legislation banning nuclear power, Australia has avoided the catastrophic cost overruns and crises that have plagued every recent reactor project in western Europe and north America. Cheaper Chinese or Russian nuclear reactors would not be accepted in Australia for a multitude of reasons (cybersecurity, corruption, repression, safety, etc.). South Korea has been suggested as a potential supplier, but South Korea is slowly phasing out nuclear power, it has little experience with its APR1400 reactor design, and South Korea’s ‘nuclear mafia‘ is as corrupt and dangerous as the ‘nuclear village‘ in Japan which was responsible for the Fukushima disaster.

4. Small Modular Reactors

The Minerals Council of Australia claims that small modular reactors (SMRs) are “leading the way in cost”. In fact, power from SMRs will almost certainly be more expensive than power from large reactors because of diseconomies of scale. The cost of the small number of SMRs under construction is exorbitant. Both the private sector and governments have been unwilling to invest in SMRs because of their poor prospects. The December 2018 report by the CSIRO and the Australian Energy Market Operator found that even if the cost of power from SMRs halved, it would still be more expensive than wind or solar power with storage costs included (two hours of battery storage or six hours of pumped hydro storage).

The prevailing scepticism is evident in a 2017 Lloyd’s Register report based on the insights of almost 600 professionals and experts from utilities, distributors, operators and equipment manufacturers. They predict that SMRs have a “low likelihood of eventual take-up, and will have a minimal impact when they do arrive”.

No SMRs are operating and about half of the small number under construction have nothing to do with climate change abatement ‒ on the contrary, they are designed to facilitate access to fossil fuel resources in the Arctic, the South China Sea and elsewhere. Worse still, there are disturbing connections between SMRs, nuclear weapons proliferation and militarism more generally.

5. Nuclear Weapons Proliferation and Nuclear Winter

“On top of the perennial challenges of global poverty and injustice, the two biggest threats facing human civilisation in the 21st century are climate change and nuclear war. It would be absurd to respond to one by increasing the risks of the other. Yet that is what nuclear power does.” ‒ Australian academic Dr. Mark Diesendorf

Nuclear power programs have provided cover for numerous covert weapons programs and an expansion of nuclear power would exacerbate the problem. After decades of deceit and denial, a growing number of nuclear industry bodies and lobbyists now openly acknowledge and even celebrate the connections between nuclear power and weapons. They argue that troubled nuclear power programs should be further subsidised such that they can continue to underpin and support weapons programs.

For example, US nuclear lobbyist Michael Shellenberger previously denied power‒weapons connections but now argues that “having a weapons option is often the most important factor in a state pursuing peaceful nuclear energy”, that “at least 20 nations sought nuclear power at least in part to give themselves the option of creating a nuclear weapon”, and that “in seeking to deny the connection between nuclear power and nuclear weapons, the nuclear community today finds itself in the increasingly untenable position of having to deny these real world connections.”

Former US Vice President Al Gore has neatly summarised the problem:

“For eight years in the White House, every weapons-proliferation problem we dealt with was connected to a civilian reactor program. And if we ever got to the point where we wanted to use nuclear reactors to back out a lot of coal … then we’d have to put them in so many places we’d run that proliferation risk right off the reasonability scale.”

Running the proliferation risk off the reasonability scale brings the debate back to climate change. Nuclear warfare − even a limited, regional nuclear war involving a tiny fraction of the global arsenal − has the potential to cause catastrophic climate change. The problem is explained by Alan Robock in The Bulletin of the Atomic Scientists:

“[W]e now understand that the atmospheric effects of a nuclear war would last for at least a decade − more than proving the nuclear winter theory of the 1980s correct. By our calculations, a regional nuclear war between India and Pakistan using less than 0.3% of the current global arsenal would produce climate change unprecedented in recorded human history and global ozone depletion equal in size to the current hole in the ozone, only spread out globally.”

Nuclear plants are also vulnerable to security threats such as conventional military attacks (and cyber-attacks such as Israel’s Stuxnet attack on Iran’s enrichment plant), and the theft and smuggling of nuclear materials. Examples of military strikes on nuclear plants include the destruction of research reactors in Iraq by Israel and the US; Iran’s attempts to strike nuclear facilities in Iraq during the 1980−88 war (and vice versa); Iraq’s attempted strikes on Israel’s nuclear facilities; and Israel’s bombing of a suspected nuclear reactor site in Syria in 2007.

6. A Slow Response to an Urgent Problem

Expanding nuclear power is impractical as a short-term response to climate change. An analysis by Australian economist Prof. John Quiggin concludes that it would be “virtually impossible” to get a nuclear power reactor operating in Australia by 2040.

More time would elapse before nuclear power has generated as much as energy as was expended in the construction of the reactor. A University of Sydney report states: “The energy payback time of nuclear energy is around 6.5 years for light water reactors, and 7 years for heavy water reactors, ranging within 5.6–14.1 years, and 6.4–12.4 years, respectively.”

Taking into account planning and approvals, construction, and the energy payback time, it would be a quarter of a century or more before nuclear power could even begin to reduce greenhouse emissions in Australia … and then only assuming that nuclear power displaced fossil fuels.

7. Climate Change & Nuclear Hazards: ‘You need to solve global warming for nuclear plants to survive.’

“I’ve heard many nuclear proponents say that nuclear power is part of the solution to global warming. It needs to be reversed: You need to solve global warming for nuclear plants to survive.” ‒ Nuclear engineer David Lochbaum.

Nuclear power plants are vulnerable to threats which are being exacerbated by climate change. These include dwindling and warming water sources, sea-level rise, storm damage, drought, and jelly-fish swarms.

At the lower end of the risk spectrum, there are countless examples of nuclear plants operating at reduced power or being temporarily shut down due to water shortages or increased water temperature during heatwaves (which can adversely affect reactor cooling and/or cause fish deaths and other problems associated with the dumping of waste heat in water sources). In the US, for example, unusually hot temperatures in 2018 forced nuclear plant operators to reduce reactor power output more than 30 times.

At the upper end of the risk spectrum, climate-related threats pose serious risks such as storms cutting off grid power, leaving nuclear plants reliant on generators for reactor cooling.

‘Water wars’ will become increasingly common with climate change − disputes over the allocation of increasingly scarce water resources between power generation, agriculture and other uses. Nuclear power reactors consume massive amounts of cooling water − typically 36.3 to 65.4 million litres per reactor per day. The World Resources Institute noted last year that 47% of the world’s thermal power plant capacity ‒ mostly coal, natural gas and nuclear ‒ are located in highly water-stressed areas.

By contrast, the REN21 Renewables 2015: Global Status Report states:

“Although renewable energy systems are also vulnerable to climate change, they have unique qualities that make them suitable both for reinforcing the resilience of the wider energy infrastructure and for ensuring the provision of energy services under changing climatic conditions. System modularity, distributed deployment, and local availability and diversity of fuel sources − central components of energy system resilience − are key characteristics of most renewable energy systems.”

8. Nuclear Racism

The nuclear industry has a shameful history of dispossessing and disempowering Aboriginal people and communities, and polluting their land and water, dating from the British bomb tests in the 1950s. The same attitudes prevail today in relation to the uranium industry and planned nuclear waste dumps and the problems would be magnified if Australia developed nuclear power.

To give one example (among many), the National Radioactive Waste Management Act dispossesses and disempowers Traditional Owners in every way imaginable:

  • The nomination of a site for a radioactive waste dump is valid even if Aboriginal owners were not consulted and did not give consent.
  • The Act has sections which nullify State or Territory laws that protect archaeological or heritage values, including those which relate to Indigenous traditions.
  • The Act curtails the application of Commonwealth laws including the Aboriginal and Torres Strait Islander Heritage Protection Act 1984 and the Native Title Act 1993 in the important site-selection stage.
  • The Native Title Act 1993 is expressly overridden in relation to land acquisition for a radioactive waste dump.

9. Nuclear Waste

Decades-long efforts to establish a repository and store for Australia’s low-and intermediate-level nuclear waste continue to flounder and are currently subject to legal and Human Rights Commission complaints and challenges, initiated by Traditional Owners of two targeted sites in South Australia. Establishing a repository for high-level nuclear waste from a nuclear power program would be far more challenging as Federal Resources Minister Matt Canavan has noted.

Globally, countries operating nuclear power plants are struggling to manage nuclear waste and no country has a repository for the disposal of high-level nuclear waste. The United States has a deep underground repository for long-lived intermediate-level waste, called the Waste Isolation Pilot Plant (WIPP). However the repository was closed from 2014‒17 following a chemical explosion in an underground waste barrel. Costs associated with the accident are estimated at over A$2.9 billion.

Safety standards fell away sharply within the first decade of operation of the WIPP repository ‒ a sobering reminder of the challenge of safely managing nuclear waste for millennia.

10. More Information

Victoria’s Nuclear Power Inquiry

Media Release ‒ Friends of the Earth ‒ 15 August 2019

Responding to the announcement that a Victorian Parliamentary inquiry will investigate the suitability of nuclear power, Dr Jim Green, national anti-nuclear campaigner with Friends of the Earth Australia, said: “Nuclear power has priced itself out of any serious debate about Australia’s energy options but it has become part of the culture wars driven by conservative ideologues.”

Dr Ziggy Switkowski, who led the Howard government’s review of nuclear power in 2006, acknowledged last year that “the window for gigawatt-scale nuclear has closed” and that nuclear power is no longer cheaper than renewables with costs continuing to shift rapidly in favour of renewables.”

“The 2006 Switkowski report estimated the cost of electricity from new reactors at $40–65 per megawatt-hour. That’s one-quarter of current estimates. In 2009, Dr Switkowski said that the construction cost of a 1,000-megawatt power reactor Australia would be $4‒6 billion. Again, that’s about one-quarter of the $17‒24 billion cost of all reactors under construction in Europe and the United States,” Dr Green said.

As a result of catastrophic cost overruns, nuclear lobbyists acknowledge that nuclear power is in “crisis” and are debating what if anything can be salvaged from “the ashes of today’s dying industry”.

“Claims that small modular reactors will rescue the nuclear industry from its crisis are unfounded. Experience with small modular reactors under construction suggests they will be hideously expensive, hence the deep reluctance of both the private sector and governments to invest in them,” Dr Green said.

Dr Switkowski recently noted that the debate about small modular reactors is “for intellects and advocates because neither generators nor investors are interested because of the risk” and that “nobody’s putting their money up.” A December 2018 report by CSIRO and the Australian Energy Market Operator found that power from small modular reactors would be more than twice as expensive as that from wind or solar with storage costs included (two hours of battery storage or six hours of pumped hydro storage). CSIRO and the AEMO concluded that “solar and wind generation technologies are currently the lowest-cost ways to generate electricity for Australia, compared to any other new-build technology.”

In January, the Climate Council ‒ comprising Australia’s leading climate scientists and other policy experts ‒ issued a policy statement noting that nuclear power plants “are not appropriate for Australia – and probably never will be” as they are “a more expensive source of power than renewable energy, and present significant challenges in terms of the storage and transport of nuclear waste, and use of water”.

“The Victorian Parliamentary inquiry will be a waste of time unless its terms of reference are broadened to include issues associated with transitioning to a clean, safe, reliable energy system based on renewables and energy efficiency,” Dr Green concluded.

Contact: Dr Jim Green 0417 318 368

More information:

Friends of the Earth statement: Nuclear Power – No Solution to Climate Change

Friends of the Earth briefing paper on nuclear power’s economic crisis (new reactors in north America and western Europe cost A$17-24 billion!) and the implications for Australia

Nuclear Power – No Solution to Climate Change

Friends of the Earth Australia Statement on Nuclear Power & Climate Change (August 2019)

Climate Council, 2019, ‘Nuclear Power Stations are Not Appropriate for Australia – and Probably Never Will Be

Briefing paper on nuclear power’s economic crisis (July 2019)

Giles Parkinson, RenewEconomy, 23 Oct 2019, ‘Why the nuclear lobby makes stuff up about the cost of wind and solar ‘

More information on nuclear/climate debates.

Get involved – Contact your local anti-nuclear group

In January 2019, the Climate Council, comprising Australia’s leading climate scientists and other policy experts, issued a policy statement concluding that nuclear power plants “are not appropriate for Australia – and probably never will be”. The statement continued: “Nuclear power stations are highly controversial, can’t be built under existing law in any Australian state or territory, are a more expensive source of power than renewable energy, and present significant challenges in terms of the storage and transport of nuclear waste, and use of water”.

Many Australian civil society groups agree with the Climate Council. Proposals to introduce nuclear power to Australia are misguided. Rather than fuel carbon emissions and radioactive risk through domestic coal power plants and the export of coal and uranium, Australia should embrace the fastest growing global energy sector ‒ renewables ‒ and become a driver of clean energy thinking and technology. Renewable energy is affordable, low risk, clean, and popular. Nuclear is simply not. Our shared energy future is renewable, not radioactive.