Fast neutron/breeder reactors

2013 Friends of the Earth summary

Fast neutron reactors generally use plutonium as the primary fuel. They do not require a moderator as the fuel fissions sufficiently with fast neutrons to maintain a chain reaction. The various possible configurations include ‘breeders’ which produce more plutonium than they consume, ‘burners’ which do the reverse, and configurations which both breed and burn plutonium. (World Nuclear Association, 2005.)

There are various possible configurations of breeder systems. Most rely on irradiation of a natural or depleted uranium blanket which produces plutonium which can be separated and used as fuel. (Hirsch et al., 2005, pp.33-35; von Hippel and Jones, 1997.)

Small R&D programs are ongoing in a few countries (e.g. India, Russia, France) but in other countries the technology has been stalled or abandoned (e.g. the UK, the US, and Germany) or never developed in the first place. Japan’s plans for breeder reactors have been limited and delayed by accidents including the sodium leak and fire at the experimental Monju reactor in 1995. (Leventhal and Dolley, 1999.)

One reason for the limited interest in plutonium breeder power sources has been the cheap, plentiful supply of uranium. That situation may change, but while breeder technology certainly holds out the promise of successfully addressing the problem of limited conventional uranium reserves, it is doubtful whether the wider range of technical, economic, safety and proliferation issues can be successfully addressed.

Breeder technology is highly problematic in relation to proliferation because it involves the large-scale production and separation of plutonium (although separation is not required in some proposed configurations). (Feiveson, 2001.) The proliferation of reprocessing capabilities is a likely outcome.

Interest in breeder and reprocessing technology in South Korea and China is arguably driven in part by concerns over Japan’s plutonium policies (which involve the large-scale separation and stockpiling of plutonium). (Burnie and Smith, 2001.)

References:

  • Burnie, Shaun and Aileen Mioko Smith, May/June 2001, “Japan’s nuclear twilight zone”, Bulletin of the Atomic Scientists, vol. 57, no.03, pp.58-62, https://www.tandfonline.com/doi/abs/10.1080/00963402.2001.11460458
  • Feiveson, Harold, 2001, “The Search for Proliferation-Resistant Nuclear Power”, The Journal of the Federation of American Scientists, September/October 2001, Volume 54, Number 5, www.fas.org/faspir/2001/v54n5/nuclear.htm
  • Hirsch, Helmut, Oda Becker, Mycle Schneider and Antony Froggatt, April 2005, “Nuclear Reactor Hazards: Ongoing Dangers of Operating Nuclear Technology in the 21st Century”, Report prepared for Greenpeace International, www.greenpeace.org/international/press/reports/nuclearreactorhazards
  • Leventhal, Paul, and Steven Dolley, 1999, “The Reprocessing Fallacy: An Update”, presented to Waste Management 99 Conference, Tucson, Arizona, March 1, 1999, www.nci.org/p/pl-wm99.htm
  • von Hippel, Frank, and Suzanne Jones, 1997, “The slow death of the fast breeder”, Bulletin of the Atomic Scientists, Vol.53, No.5, September/October.
  • World Nuclear Association, 2005, “Fast Neutron Reactors”, http://www.world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx

The slow death of fast reactors

Jim Green, 2 Nov 2016, ‘The slow death of fast reactors’, EnergyPost, energypost.eu/slow-death-fast-reactors/

Generation IV ‘fast breeder’ reactors have long been promoted by nuclear enthusiasts, writes Jim Green, editor of Nuclear Monitor, but Japan’s decision in September to abandon the Monju fast reactor is another nail in the coffin for this failed technology.

Fast neutron reactors are “poised to become mainstream” according to the World Nuclear Association (WNA). But data provided by the WNA itself gives the lie to the claim. The WNA lists eight “current” fast reactors, but one of them hasn’t begun operating, and another (Monju) has just been put out of its misery. Let’s say there are six ‘operable’ fast reactors (one isn’t operating but might in the future ‒ hence the term ‘operable’). Here’s the historical pattern based on WNA tables:

1976 ‒ 7 operable fast reactors
1986 ‒ 11
1996 ‒ 7
2006 ‒ 6
2016 ‒ 6

Of course there’s always tomorrow: the WNA lists 13 fast reactor projects under “active development” for “near- to mid-term deployment”. But a large majority of those 13 projects ‒ perhaps all of them ‒ lack both approval and funding.

Fast reactors aren’t becoming mainstream. One country after another has abandoned the technology. Nuclear physicist Thomas Cochran summarises the history: “Fast reactor development programs failed in the: 1) United States; 2) France; 3) United Kingdom; 4) Germany; 5) Japan; 6) Italy; 7) Soviet Union/Russia 8) U.S. Navy and 9) the Soviet Navy. The program in India is showing no signs of success and the program in China is only at a very early stage of development.”

Japan wastes billions

The latest setback was the decision of the Japanese government at an extraordinary Cabinet meeting on September 21 to abandon plans to restart the Monju fast breeder reactor.

Monju reached criticality in 1994 but was shut down in December 1995 after a sodium coolant leak and fire. The reactor didn’t restart until May 2010, and it was shut down again three months later after a fuel handling machine was accidentally dropped in the reactor during a refuelling outage. In November 2012, it was revealed that Japan Atomic Energy Agency had failed to conduct regular inspections of almost 10,000 out of a total 39,000 pieces of equipment at Monju, including safety-critical equipment.

In November 2015, the Nuclear Regulation Authority declared that the Japan Atomic Energy Agency was “not qualified as an entity to safely operate” Monju. Education minister Hirokazu Matsuno said on 21 September 2016 that attempts to find an alternative operator have been unsuccessful.

The government has already spent 1.2 trillion yen (US$12bn) on Monju. The government calculated that it would cost another 600 billion yen (US$6bn) to restart Monju and keep it operating for another 10 years.

Decommissioning also has a hefty price-tag ‒ far more than for conventional light-water reactors. According to a 2012 estimate by the Japan Atomic Energy Agency, decommissioning Monju will cost an estimated 300 billion yen (US$3bn).

So Japan will have wasted over US$15 billion on the Monju fiasco. Perhaps those responsible will argue that the figure pales into insignificance compared to the estimated long-term costs of around US$500 billion arising from the Fukushima disaster.

Allison MacFarlane, former chair of the US Nuclear Regulatory Commission, recently made this sarcastic assessment of fast reactor technology: “These turn out to be very expensive technologies to build. Many countries have tried over and over. What is truly impressive is that these many governments continue to fund a demonstrably failed technology.”

Japan neatly illustrates MacFarlane’s bemusement. Despite the Monju fiasco, the Japanese government wants to stay involved in the fast reactor game, either by restarting the Joyo experimental fast reactor (shut down since 2007 due to damage to reactor core components) or pursuing joint research with France.

Why would Japan continue its involvement in fast reactors? Most likely, the government has no interest in fast reactors per se, but giving up would make it more difficult to justify continuing with the partially-built Rokkasho reprocessing plant. Providing plutonium fuel for fast reactors was one of the main justifications for Rokkasho.

Rokkasho has been an even more expensive white elephant than Monju. Its scheduled completion in 1997 has been delayed by more than 20 times due to technical glitches and other problems, and its construction cost is now estimated at 2.2 trillion yen (US$22bn) ‒ three times the original estimate.

Japan has wasted around US$37 billion on Monju (US$15bn) and Rokkasho (US$22bn) and plans to continue to throw good money after bad. According to the International Panel on Fissile Materials, if Rokkasho operates it is expected to increase the electricity bills of Japan’s ratepayers by about US$100 billion over the next 40 years.

India’s failed program

India’s fast reactor program has also been a failure. The budget for the Fast Breeder Test Reactor (FBTR) was approved in 1971 but the reactor was delayed repeatedly, attaining first criticality in 1985. It took until 1997 for the FBTR to start supplying a small amount of electricity to the grid. The FBTR’s operations have been marred by several accidents.

Preliminary design work for a larger Prototype Fast Breeder Reactor (PFBR) began in 1985, expenditures on the reactor began in 1987/88 and construction began in 2004 ‒ but the reactor still hasn’t started up. Construction has taken more than twice the expected period. In July 2016, the Indian government announced yet another delay, and there is scepticism that the scheduled start-up in March 2017 will be realised. The PFBR’s cost estimate has gone up by 62%.

India’s Department of Atomic Energy (DAE) has for decades projected the construction of hundreds of fast reactors ‒ for example a 2004 DAE document projected 262.5 gigawatts (GW) of fast reactor capacity by 2050. But India has a track record of making absurd projections for both fast reactors and light-water reactors ‒ and failing to meet those targets by orders of magnitude.

Princeton academic M.V. Ramana writes: “Breeder reactors have always underpinned the DAE’s claims about generating large quantities of electricity. Today, more than six decades after the grand plans for growth were first announced, that promise is yet to be fulfilled. The latest announcement about the delay in the PFBR is yet another reminder that breeder reactors in India, like elsewhere, are best regarded as a failed technology and that it is time to give up on them.”

Russia’s snail-paced program

Russia’s fast reactor program is the only one that could be described as anything other than a failure. But it hasn’t been a roaring success either.

Three fast reactors are in operation in Russia ‒ BOR-60 (start-up in 1969), BN-600 (1980) and BN-800 (2014). There have been 27 sodium leaks in the BN-600 reactor, five of them in systems with radioactive sodium, and 14 leaks were accompanied by burning of sodium.

The Russian government published a decree in August 2016 outlining plans to build 11 new reactors over the next 14 years. Of the 11 proposed new reactors, three are fast reactors: BREST-300 near Tomsk in Siberia, and two BN-1200 fast reactors near Ekaterinburg and Chelyabinsk, near the Ural mountains. However, like India, the Russian government has a track record of projecting rapid and substantial nuclear power expansion ‒ and failing miserably to meet the targets.

As Vladimir Slivyak recently noted in Nuclear Monitor: “While Russian plans look big on paper, it’s unlikely that this program will be implemented. It’s very likely that the current economic crisis, the deepest in history since the USSR collapsed, will axe most of the new reactors.”

While the August 2016 decree signals new interest in reviving the BN-1200 reactor project, it was indefinitely suspended in 2014, with Rosatom citing the need to improve fuel for the reactor and amid speculation about the cost-effectiveness of the project.16

In 2014, Rosenergoatom spokesperson Andrey Timonov said the BN-800 reactor, which started up in 2014, “must answer questions about the economic viability of potential fast reactors because at the moment ‘fast’ technology essentially loses this indicator [when compared with] commercial VVER units.”

China going nowhere fast

Australian nuclear lobbyist Geoff Russell cites the World Nuclear Association (WNA) in support of his claim that China expect fast reactors “to be dominating the market by about 2030 and they’ll be mass produced.”

Does the WNA paper support the claim? Not at all. China has a 20 MWe experimental fast reactor, which operated for a total of less than one month in the 63 months from criticality in July 2010 to October 2015. For every hour the reactor operated in 2015, it was offline for five hours, and there were three recorded reactor trips.

China also has plans to build a 600 MWe ‘Demonstration Fast Reactor’ and then a 1,000 MWe commercial-scale fast reactor. Whether those reactors will be built remains uncertain ‒ the projects have not been approved ‒ and it would be another giant leap from a single commercial-scale fast reactor to a fleet of them.

According to the WNA, a decision to proceed with or cancel the 1,000 MWe fast reactor will not be made until 2020, and if it proceeds, construction could begin in 2028 and operation could begin in about 2034.

So China might have one commercial-scale fast reactor by 2034 ‒ but probably won’t ‒ and Russell’s claim that fast reactors will be “dominating the market by about 2030″ is jiggery-pokery of the highest order and the lowest repute.

According to the WNA, China envisages 40 GW of fast reactor capacity by 2050. A far more likely scenario is that China will have 0 GW of fast reactor capacity by 2050. And even if the 40 GW target was reached, it would still only represent around one-sixth of total nuclear capacity in China in 2050 according to the WNA ‒ fast reactors still wouldn’t be “dominating the market” even if capacity grows 2000-fold from 20 MW (the experimental reactor) to 40 GW.

Travelling-waves and the non-existent ‘integral fast reactor’

Perhaps the travelling-wave fast reactor popularised by Bill Gates will come to the rescue? Or perhaps not. According to the WNA, China General Nuclear Power and Xiamen University are reported to be cooperating on R&D, but the Ministry of Science and Technology, China National Nuclear Corporation, and the State Nuclear Power Technology Company are all skeptical of the travelling-wave reactor concept.

Perhaps the ‘integral fast reactor’ (IFR) championed by James Hansen will come to the rescue? Or perhaps not. The UK and US governments have been considering building IFRs (specifically GE Hitachi’s ‘PRISM’ design) for plutonium disposition ‒ but it is almost certain that both countries will choose different methods to manage plutonium stockpiles.

In South Australia, nuclear lobbyists united behind a push for IFRs/PRISMs, and they would have expected to persuade a stridently pro-nuclear Royal Commission to endorse their ideas. But the Royal Commission completely rejected the proposal, noting in its May 2016 report that advanced fast reactors are unlikely to be feasible or viable in the foreseeable future; that the development of such a first-of-a-kind project would have high commercial and technical risk; that there is no licensed, commercially proven design and development to that point would require substantial capital investment; and that electricity generated from such reactors has not been demonstrated to be cost competitive with current light water reactor designs.

A future for fast reactors?

Just 400 reactor-years of worldwide experience have been gained with fast reactors. There is 42 times more experience with conventional reactors (16,850 reactor-years). And most of the experience with fast reactors suggests they are more trouble than they are worth.

Apart from the countries mentioned above, there is very little interest in pursuing fast reactor technology. Germany, the UK and the US cancelled their prototype breeder reactor programs in the 1980s and 1990s.

France is considering building a fast reactor (ASTRID) despite the country’s unhappy experience with the Phénix and Superphénix reactors. But a decision on whether to construct ASTRID will not be made until 2019/20.

The performance of the Superphénix reactor was as dismal as Monju. Superphénix was meant to be the world’s first commercial fast reactor but in the 13 years of its miserable existence it rarely operated ‒ its ‘Energy Unavailability Factor’ was 90.8% according to the IAEA. Note that the fast reactor lobbyists complain about the intermittency of wind and solar!

A 2010 article in the Bulletin of the Atomic Scientists summarised the worldwide failure of fast reactor technology: “After six decades and the expenditure of the equivalent of about $100 billion, the promise of breeder reactors remains largely unfulfilled. … The breeder reactor dream is not dead, but it has receded far into the future. In the 1970s, breeder advocates were predicting that the world would have thousands of breeder reactors operating this decade. Today, they are predicting commercialization by approximately 2050.”

While fast reactors face a bleak future, the rhetoric will persist. Australian academic Barry Brook wrote a puff-piece about fast reactors for the Murdoch press in 2009. On the same day he said on his website that “although it’s not made abundantly clear in the article”, he expects conventional reactors to play the major role for the next two to three decades but chose to emphasise fast reactors “to try to hook the fresh fish”.

So that’s the nuclear lobbyists’ game plan − making overblown claims about fast reactors and other Generation IV reactor concepts, pretending that they are near-term prospects, and being less than “abundantly clear” about the truth.

Dr Jim Green is the national nuclear campaigner with Friends of the Earth, Australia, and editor of the Nuclear Monitor newsletter published by the World Information Service on Energy.